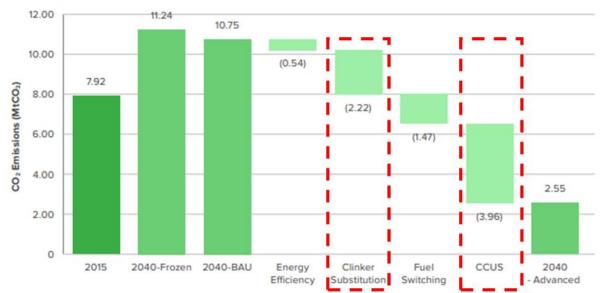
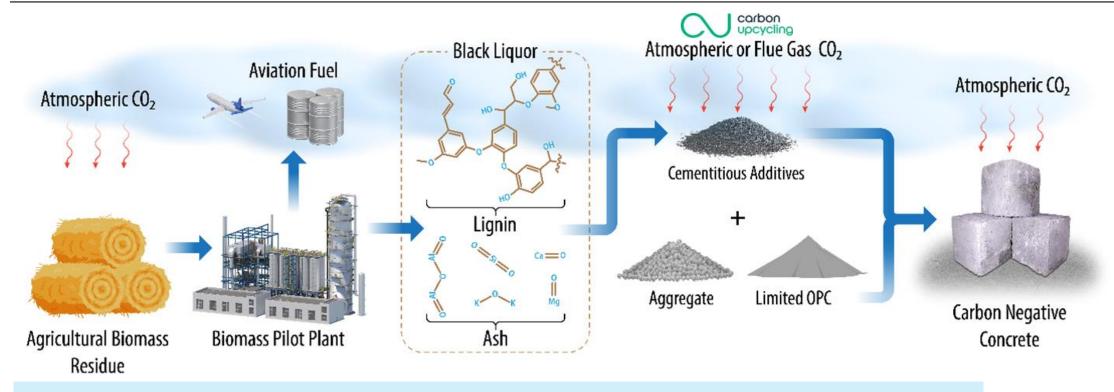

HESTIA Kickoff Meeting

High-Performing Carbon-Negative Concrete Using Low-Value Byproducts From Biofuels Production Wale Odukomaiya, NREL

Technical Overview

- Project Team:
 - NREL (PI: Wale Odukomaiya)
 - Carbon Upcycling (Co-PI: Apoorv Sinha)
 - CU Boulder (Co-PI: Mija Hubler)
 - Colorado School of Mines (Co-PI: Lori Tunstall)
- Project Description:
 - Carbon-negative 'LignoCrete' by utilizing atmospheric CO₂ from agricultural residues and direct carbon utilization
 - Combines two highest potential cement
 GHG mitigation approaches into one concept

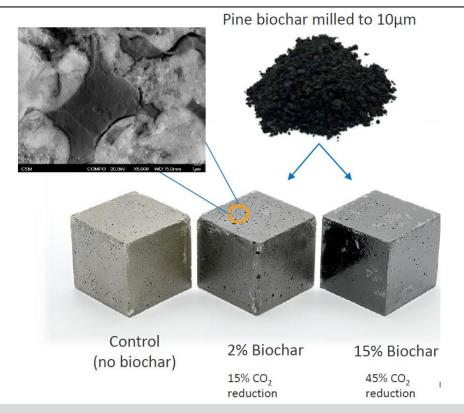


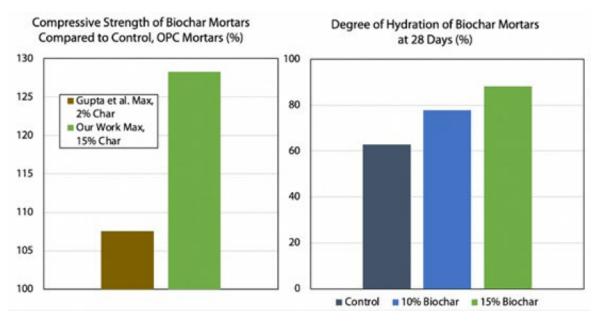

Figure ES 2. The impact of CO₂ emissions reduction levers on emissions from California's cement industry up to 2040

Material	Price Range (\$/ton)	Estimated U.S. Availability	Rival Uses
Fly Ash	~35—110	25.5 Mt/y	Yes
Slag	<1-110	14 Mt/y	Yes

Current materials used for clinker substitution

Technical Overview




Technology Summary

- We will develop two low carbon/carbon-negative concrete supplementary cementitious materials (SCMs), and a carbon-negative thermally insulative admixture using lignin-rich black liquor byproducts from sustainable aviation fuel production.
- These SCMs and admixture will be CO₂ enhanced using Carbon Upcycling's MACE technology, improving performance and sequestering additional CO₂.
- The SCMs and admixture will be combined with aggregate and a limited amount of portland cement to create a carbon-negative LignoCrete.

Project Impact

Technology Impact

The US consumed ~102 megatons of cement in 2020. **LignoCrete** could replace 20-60 megatons per year.

This technology will: (1) displace OPC and heavy industry-based SCMs with low carbon/carbon-negative biobased SCMs, and (2) providing overall industry acceptance—through strategic industrial partnerships—of these novel classes of SCMs and additives for cementitious materials.

Proposed Targets

Metric	State of the Art (OPC concrete)	Proposed (LignoCrete)
GHG emissions per cubic yard of concrete	190-210 kg CO _{2,eq} /yd ³	-10-50 kg CO _{2,eq} /yd ³
Thermal conductivity	1.4-2.3 W/(m*K)	<0.7 W/(m*K)
Compressive strength	20+ MPa	20+ MPa
Material cost	~\$62/yd ³	~\$72/yd3 (initially)

Anticipated Challenges

- Anticipated challenges:
 - High level (~35%) of cement replacement needed to reach carbon negativity
 - Potential low early-age strength
 - Energy intensity of drying black liquor
 - Risks associated with scaling of SAFFiRE (corn ethanol to SAF) process

Tech to Market Plan

- Potential final products:
 - CO₂-enhanced SCMs marketed and sold by Carbon Upcycling
 - Ready-mix concrete product marketed and sold by concrete suppliers
- Potential early-stage market:
 - Construction 3D printing (3DCP)
 - More likely to be early adopters
 - 3DCP mixes are typically high cement content
- Industrial Advisory Committee:
 - Traditional players: US Concrete, NRMCA
 - Arch. + Eng.: EUA, Pond & Co., SOM
 - 3DCP: Emergent 3D, Alquist 3D
 - Biomass: SAFFiRE/D3MAX
 - Seeking: standards, masonry/finishing

Source: https://materialdistrict.com/article/turning-waste-concrete-into-3d-printed-public-furniture,

